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Zografos 1577 1 ,  Athens, Greece 
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Abstract. It is shown that, within position-space renormalisation group (PSRG) theory, 
neighbour-avoiding walks (NAWS) and self-avoiding walks (SAWS) on the square lattice 
obey the same ‘end-to-end distance’ critical exponent Y. This universality is shown by 
applying a recent finite lattice renormalisation transformation to ordinary and oriented 
NAW and SAW problems and then using an exact equivalence between SAWS on an oriented 
lattice and NAWS on its covering lattice. The universality class includes several oriented 
walk problems. 

1. Introduction 

The SAW problem on a lattice is of considerable importance as it takes account, in a 
realistic way, of the excluded volume effect of a polymer chain in dilute solutions 
(Domb 1963). SAWS are random walks that contain no self-intersections. This model 
is related to the Ising model (Domb 1970, Fisher and Sykes 1959) and it is also 
equivalent to the n-component spin model, in the limit n + 0 (de Gennes 1972). Modern 
notions in the theory of critical phenomena were soon carried over to polymer models 
in order to establish their relation to critical phenomena and derive scaling laws for 
polymers (McKenzie 1976). 

In particular the notion of universality implies that the ‘end-to-end distance’ critical 
exponent v, defined by 

( R k ) -  N 2 ”  (1) 

where N is the number of steps of the SAWS, would not depend on the lattice but 
would depend on its dimensionality. This universality hypothesis is strongly supported 
by most numerical studies (McKenzie 1976, Watts 1975, Domb 1963). As pointed out 
by Whittington ( 1  982) the next question is whether the universality class includes other 
models as well as the SAW model. Such extensions have been suggested by various 
authors (Hioe 1967, Domb and Joyce 1972, Watson 1970, 1974, Malakis 1975). A very 
convincing extension concerns the NAW problem (Hioe 1967, Watson 1974, Malakis 
1975). NAWS are SAWS that contain no nearest-neighbour contacts. The work of Watson 
(1974) when combined with the above stated universality hypothesis suggests that NAWS 

and SAWS are in  the same universality class. 
The primary aim of this paper is to provide evidence for the above long standing 

conjecture in a way that does not depend on the universality hypothesis. We use a 
finite lattice renormalisation transformation to compare oriented and ordinary walk 
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problems on the square lattice. The method has been recently introduced by Prentis 
(1984) in order to compare SAWS on the Manhattan-oriented and the (ordinary non- 
oriented) square lattice. It is a simple generalisation of the finite lattice PSRG theory 
of SAWS (Stanley et a1 1982, Redner and Reynolds 1981). 

We employ two well known orientations on the square (S) lattice shown in figure 1 
(Kasteleyn 1963, Malakis 1975, 1976). The oriented lattice in figure l ( a )  is known 
as the Manhattan square (MS) lattice. The other oriented lattice in figure l(6) has no 
standard name, recently Guttmann (1983) used the name ‘L lattice’ whereas in earlier 
papers the name ‘underlying lattice of the Manhattan square (UMS) lattice’ was used. 
This notation (UMS lattice) serves as a reminder of the fact that the two oriented graphs 
in figure 1 are related by the covering operation. The covering graph G‘ of an oriented 
graph G is defined as follows: (i) to every arc (oriented line) of G there corresponds 
a point in G‘, and (ii) two points of G‘ are connected by an arc from the one point 
to the other if the corresponding arcs of G are consecutive. The MS lattice is the 
covering graph of the oriented lattice in figure l(6) (UMS or L lattice). 

a 

Figure 1. ( a )  The Manhattan square (MS) lattice. (b) The underlying of the Manhattan 
square (UMS) lattice or L lattice. 

This observation was the basis of Kasteleyn’s treatment of the Hamiltonian walk 
problem on the MS lattice. The importance of the covering operation is that one can 
relate apparently different walk problems. In Kasteleyn’s study Hamiltonian walks 
(circuits) on the MS lattice are related to Eulerian walks (circuits) on the UMS lattice, 
and this latter problem is solvable. As it has been pointed out (Malakis 1975), the 
equivalence can be carried over to other walk problems on these two oriented lattices. 
It is again one of these equivalences, stated in 9 6 as theorem 1, that, when combined 
with PSRG theory, provides the main conclusion of this paper. 

The renormalisation approach has already been applied to the SAW problem in 
1972 by de Gennes. He appealed to the sexpansion of critical exponents by using a 
spin field for the isomorphic ( n  + 0)-component spin model. Shapiro (1978) was the 
first to apply a direct decimation transformation to the problem. Since, several direct 
renormalisation procedures have been suggested including a Niemeijer-van Leeuwen 
approach (Napiorkowski et a1 1979, Malakis 1980), a Monte Carlo renormalisation 
(Kremer et a1 1981), a phenomenological approach (Derrida 1981), and a cell-to-bond 
PSRG transformation (de Queiroz and Chaves 1980, Family 1981, Redner and Reynolds 
1981, Stanley et a1 1982). 

This last method is simple and systematic. Furthermore, the analysis of the method 
by Redner and Reynolds (1981) suggests that the approximations converge to the 
correct behaviour as the cell size is increasing. The recent generalisation of the method, 
introduced by Prentis (1984), provides a powerful tool to compare critical behaviour 
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of oriented and non-oriented walk problems. For our purposes it is necessary to 
describe the Prentis approach in a slightly more general way and we shall do so in § 2.  

The renormalisation scheme in § 2 may be applied to a wide class of oriented walk 
problems and nc: only to the SAW problem on the MS lattice. However, it is the 
combination of the PSRG theory with the covering property of the MS lattice that permits 
comparison of SAWS and NAWS on the square lattice, something that cannot be done 
by the PSRG transformation alone. In the remainder we shall apply the method to 
compare SAWS on the UMS and square lattices (0 3) and NAWS on the MS and square 
lattices (8 4). In 9 5 we consider two oriented walk problems for which the critical 
behaviour is expected to be different from that of the ordinary problems. Our con- 
clusions are summarised in § §  6 and 7 .  

2. Renormalisation of oriented and non-oriented walk problems 

We assume that the orientations of interest on the square lattice have the following 
two properties: (i) If all bond orientations are reversed, then the resulting 'anti-oriented' 
lattice is by symmetry identical to the original oriented lattice. Both lattices in figure 1 
have this property. (ii) If b is an odd integer we can divide the oriented lattice into 
b x 6 bond cells, such as shown in figure 2 ( a )  for the UMS lattice. Furthermore, if for 
each cell we substitute a vertical and a horizontal renormalised bond- of length b with 
an orientation determined by a majority rule, then the resulting lattice of the renor- 
malised bonds obeys the same orientation as the original lattice. 

. . ~ ~ . ; &  1 = 1 = 

.:pq#:, ,I = ~ 

-b 

(a1 ( b l  

Figure2. ( a )  Division of the U M S  lattice into 3 x3 bond cells. ( b )  The lattice after 
renormalisation. 

Now, consider a non-oriented walk C entering the cell via any bottom (left)-point 
and leaving via any top (right)-point; we say that C spans the cell in the vertical 
(horizontal) direction. Let n be the number of steps of C within the cell and no the 
number of steps that preserve the bond orientation. Then n, = n - no is the number of 
steps that violate the bond orientation. The cell weight of C is 

W,, , , (C)= K"p""1 - - p p  

where p has the meaning of the probability that a step preserves the bond orientation. 
The fugacity K is as usual introduced as a measure of the step weights ( K p  or K(l - p ) )  
and the rate of divergence at its critical value yields physical quantities of interest. 
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The total weight of a walk C is the product of (2) over all cells spanned by C 

W ( C > =  n WceIl(C). 
C-cells 

(3) 

Assuming a mapping in which every renormalised walk C' is the image of a set { C},, 
of walks C on the original lattice, the weight of C' is 

We can write W'( C') as product of its step weights and since the steps of C' correspond 
to cells spanned by C, we have 

To achieve 'connectivity' for C its entry point in the cell must be fixed and in order 
to avoid arbitrariness, with fixing the entry point, a simple average over the b entry 
points is then performed. Thus, the step weight of a renormalised step that preserves 
the orientation of the transformed lattice is 

K 'p '=F(K,p ,  1 - p ) / b  (6) 

where F is the sum of the weights (2) for all walks starting from any bottom (left)-point 
in the cell and ending at any top (right)-point. It should be noted that the above 
averaging ensures also that the various types of cell (four for the MS and two for the 
UMS lattice) renormalise in the same way. By the symmetry property (i) the weight for 
a renormalised step that violates the bond orientation is 

K'(l - p ' ) = F ( K ,  l - p , ~ ) / b .  (7) 

The transformation equations (6) and (7) describe both oriented and non-oriented 
walk problems. For p = 1 (or p = 0) only oriented (or anti-oriented) walks renormalise 
and property (ii), for the cell division of the oriented lattice, ensures that the resulting 
renormalised walks obey the same orientation rules as the original walks. For p =i  
the transformation is identical to the cell-to-bond PSRG for the non-oriented walks 
with a transformed fugacity fK (Prentis 1984). 

In order to discuss critical behaviour we note that 

so that the correlation lengths, defined by 
I 

are related by 

For any orientation it is expected that there exist a non-trivial fixed point at K * f 0, 
CD and p" = 4 corresponding to the ordinary (non-oriented) walk problem, whose 
connective constant j~ and critical exponent v are given by: 
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and 
v = In blln A 

where A is the relevant eigenvalue of the transformation at the fixed point. The 
connective constant p describes the asymptotic behaviour ( N  + CO) of the number CN 
of N-step walks 

CN N’p N. ( 1 3 )  

The global structure of the renormalisation mapping and the existence of additional 
non-trivial fixed points may depend on the orientation. The situation will be elucidated 
in the following sections. 

3. SAWS on the UMS and S lattices 

In order to compare the critical behaviour of SAWS on the UMS and S lattices, we shall 
use the 3 x3 cell-to-bond PSRG transformation. The function F ( K ,  p ,  1 - p )  in equation 
(6)  can be found by enumeration of SAWS which span the b = 3 cell: 

F ( K , X ,  Y ) = K ~ ( ~ X Z Y + X Y * ) + K ~ ( ~ X ~ Y + ~ X Y ~ )  

+ K 5 ( 4 X 5  + 2 X 4 Y  + lox3 Y 2  + 2 X 2  Y 3  + 4 X Y 4  + 2  Y 5 )  

+ K 6 ( 4 X 6  + 6 X 4 Y 2  + 6 X 2  Y4 + 4 y 6 )  

+ K 7 ( 6 X 6 Y  + 6 X 4 Y 3  + 2 X 3  Y4 + 6 X 2  Y’) 

+ K 8 ( 4 X 5 Y 3  + 4 X 3 Y 5 )  + K 9 ( 2 X 7 Y 2 + 4 X 5 Y 4 + 2 X 3 y 6 ) .  (14) 
The diagram in figure 3 illustrates the flow pattern of the renormalisation mapping 

and is similar to the one found by Prentis-using the orientation of the MS lattice in 
order to determine the bond orientation of a step. The location of the non-trivial fixed 
point ( K *  = 0.8788, p *  = i) and the relevant eigenvalue (K-direction) A K  = 4.52 are the 
same as those found by Prentis. There are some insignificant differences between the 
diagrams obtained for the two orientations. In the present case there exist no trivial 
fixed points at K *  = CO, p*  = 1 or = 0 and the flow is different for large K. The values 
of the irrelevant p-eigenvalue are A, = 0.26 for the UMS lattice and A, = 0.61 for the 
MS lattice. 

t 

K 

Figure 3. Flow diagram from the 3 X 3 transformation as applied to SAWS on UMS and 
square lattices. The points on the critical surface (full curve) flow into the non-trivial fixed 
point (0) at p = $. Trivial fixed points (0) are also shown. 
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However, the critical behaviour is the same. There exists a critical surface which 
intersects the p = 1 and p = O  lines at Kc=0.7383. The points of this surface (line), 
including the points ( K c ,  p = 1 or 0), flow into the non-trivial fixed point at p = f and 
form a universality class. For each value of p we have a ‘partially’ oriented SAW 

problem and all these obey the same critical exponent. The estimate of the 3 X 3  
cell-to-bond transformation is 

v = In 3 / ln  4.52 = 0.7283, (15) 

about 3% lower than the best numerical estimates or the conjectured value 0.75. 
Among these equivalent problems are the SAW problem on the UMS lattice (p = 1 

or 0) and the ordinary SAW problem on the square lattice ( p  = f). With regard to the 
connective constant, the approximation yields for the ordinary SAW problem on the 
square lattice 

pEAW = 2.28 (16) 

a value that is 13% lower than the best known estimate (=2.6385, for numerical results 
see McKenzie 1976 and references therein). For the SAW problem on the UMS lattice 
the connective constant is determined by the intersection of the critical surface with 
the p = 1 or p = 0 axis 

pLi5 -  l / K c =  1.355. (17) 

This is to be compared with the numerical result 1 . 5 6 . .  . (Guttmann 1983). 

4. NAws.on the MS and S lattices 

We can use the same method to compare NAWS on the MS and S lattices. Again we 
have to find by enumeration of NAWS the function F ( K ,  p ,  1 - p )  for the 6 = 3 cell 

F ( K ,  X ,  y) = K 3 ( 2 X 3  + Y 3 )  + K 4 ( X 4  + 3 X 3  Y + 4 X 2  Y 2  + 3 X Y 3  + Y“)  

+ K5(3X5 + 10x3 Y 2  + 2 x ’  Y 3  + X Y 4 )  

+ K 6 ( X 5 Y  + 2 X 4 Y 2  + X 3 Y 3 )  + K 7 ( 2 X 5 Y 2 ) .  (18) 
The resulting flow diagram is shown in figure 4. It has the same features as that of 
Prentis for the SAW problem on the MS lattice. There exist trivial fixed points at K *  = CO, 

t L 
0 

L c - p -  

1 
K 

Figure 4. Flow diagram for NAWS on MS and square lattices 
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p *  = 1 , 0, and at K* = 0, p *  = $. The non-trivial fixed point corresponding to non- 
oriented NAWS is at K* = 0.9606, p*  = $. Thus the approximation yields for the con- 
nective constant of the ordinary NAW problem on the square lattice: 

psNAW = 2.08 (19) 

(numerical result -2.3, Hioe 1967). The relevant eigenvalue is A K  =4.1458 and the 
irrelevant A, = 0.324. The estimate of the 3 x 3 transformation for the critical exponent 
is 

v = 0.7725 (20) 

which is 3% higher than the value 0.75. The connective constant of the NAW problem 
on the MS lattice is equal to the connective constant of the SAW problem on the UMS 

lattice (see § 6 and Malakis 1975). However, the approximation yields a slightly lower 
value than that previously found (1.355): 

pE:w= 1.317. (21) 

The important point is that the 3 x3 cell-to-bond PSRG transformation predicts a 
universality class including the ordinary NAW problem on the square lattice and the 
NAW problem on the MS lattice. 

5. Other oriented problems 

We now use the method to compare walk problems which obey different critical 
exponents. This may be considered as a test of the method. 

The first example is known as the fully directed SAW problem (de Queiroz 1983). 
The orientation on the square lattice is shown in figure 5.  A fully directed SAW is 
alllowed to proceed either upwards or to the right only. For this problem ( p  = 1) it is 
known (Malakis 1975) that v D =  1 and de Queiroz (1983) has shown that the b x b 
cell-to-bond PSRG transformation produces asymptotically the exact result on the p = 1 
axis: 

V b  = 1 - l t l  2/1n b + 1 (b+oo). (22) 
In order to find the behaviour for p # 1 we may proceed as before. The F-function 

is now 

F ( K ,  X, Y)= K3(3X3)+K4(6X4+6X3Y)+K5(6XS+12X4Y+6X3Y') 
+K6(10X5Y +10X4Y2)+K7(4X6Y+ 12X5Y2+4X4Y3) 

+ K ~ ( ~ x ~  Y* + 4 x S y 3 )  + y2  + 4 x 6 y 3  + 2 x 5  y4). (23) 

Figure 5. The orientation of the fully directed square lattice, that corresponds to the fully 
directed SAW problem. 
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The diagram in figure 6 illustrates the flow pattern of the renormalisation mapping. 
The behaviour is now different. The nontrivial fixed point corresponding to ordinary 
SAWS ( K *  =0.8788, p *  =f) has in both directions relevant eigenvalues AK =4.52 and 
A, = 3. The points of the critical surface now flow into the fixed points at K *  = 0.589, 
p* = 1, 0 which correspond to the fully directed SAW problem. There is a different 
universality class (not including the ordinary SAW problem) characterised by the critical 
behaviour of the fully directed SAW problem with an exponent vD= 1 which within 
the 3 x 3 approximation is estimated: 

VD = 0.808. (24) 

Figure6. Flow diagram of the renormalisation mapping in the case where we compare 
fully directed and non-oriented SAWS on the square lattice. Points on the critical surface 
flow into fixed points on the p = 1 and p = 0 lines and not into the fixed point at p = f. 

The transformation predicts a correct qualitative distinction between fully directed 
and ordinary SAWS, as it should. For any p # 4 the problem is anisotropic and obeys 
the critical exponent of the fully directed SAW problem. A conclusion that could be 
deduced on probabilistic grounds. 

The second example is the NAW problem on the UMS lattice. In this case ( p  = 1,O) 
it is easily seen that, due to the restrictions imposed on the problem, there exists only 
one NAW for any number of steps and 

To find the p # 1, 0 behaviour we proceed as before. The F-function is now: 

F(K, x, y) = ~ 3 ( 2 x 2 ~  + x Y ~ )  + ~ ~ ( 6 x 3  Y + 6 x y 3 )  

+ K ~ ( ~ X ~ + ~ O X ~ Y ~ + ~ X ~ Y ~ + ~ X Y ~ )  

+ ~ 7 2 x 4  y2 +2x2  y4) + ~'(2x4 ~ 3 ) .  (26) 
The flow pattern (figure 7) is different from all previous ones. There exists a non-trivial 
fixed point ( K *  = 0.9609, p *  = f) corresponding to non-oriented NAWS with eigenvalues 
A K  = 4.1458, A, = 0.298 and two more non-trivial fixed points at K *  = 1.1, p *  = 1,O 
corresponding to the NAW problem on the UMS lattice. The points of the critical surface 
flow into the fixed point at p = 4 and not into the fixed points on the p = 1, 0 lines. 
The universality class includes the ordinary NAW problem as well as all 'partially' 
(0 < p  < 1) oriented NAW problems. This is an interesting prediction that may be 
rationalised. The restrictions of the orientation plus the restrictions on the walks 
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Figure 7. Flow diagram from the renormalisation; oomparison between NAWS on UMS and 
square lattices. Points on the ciritical surface (0 < p < 1) flow into the fixed point at p = f. 
The fixed points (0) at p = 1 and p = 0 correspond to NAWS on the UMS lattice. Note the 
difference between this diagram and the diagrams in figures 3 and 4. In this case there 
exist non-trivial fixed points on the p = 1 and p = 0 lines. 

produce an anisotropic problem only when p = 1 or p = 0. For any other value of p ,  
no such anisotropy exists since the walk can proceed in all four directions on the 
lattice with equal probabilities. 

On the p = 1 line, one can carry out the transformation for any value of b(=3,5, . . .). 
We find that 

This describes the critical behaviour for the isolated fixed point on the p = 1 (or p = 0) 
line. Furthermore, the transformation on the p = 1 line yields for the connective constant 

These results become exact as b+co and correspond to NAWS on the UMS lattice. 

6. The universality class of ordinary SAWS 

We found that within the 3 x 3 cell-to-bond PSRG transformation several oriented walk 
problems obey the same critical exponent Y as the ordinary SAW problem on the square 
lattice. These equivalences will be expressed below as ‘statements’, but before we do 
so we shall recall an exact equivalence. 

Theorem 1 .  There is a one-to-one correspondence between SAWS (with N steps) on the 
UMS lattice and NAWS (with N - 1 steps) on the MS lattice. The two problems are in 
the same universality class, i.e., they obey the same critical exponent (Malakis 1975). 

It may be noted that the corresponding relationship between SAWS on a non-oriented 
lattice and (ordinary) NAWS on its covering lattice was demonstrated by Watson (1974) 
and if combined with the conjecture that v depends only on dimensionality (universality 
hypothesis) suggests that SAWS and NAWS are in the same universality class. We can 
now reach this conclusion without the aid of the universality hypothesis. First we give 
a statement due to Prentis (1984). 



2278 A Malakis 

Statement 1. SAWS on the MS lattice and SAWS on the square lattice are in the same 
universality class. 

The following two statements are based on the flow-diagrams of § §  3 and 4 respectively. 

Statement 2. SAWS on the UMS lattice and SAWS on the square lattice are in the same 
universality class. 

Statement 3. NAWS on the MS lattice and NAWS on the square lattice are in the same 
universality class. 

Prentis’ statement 1 is not necessary for including SAWS and NAWS on the square 
lattice in the same universality class. Statement 3, combined with theorem 1, implies 
that NAWS on the MS lattice, NAWS on the square lattice and SAWS on the UMS lattice 
are all in the same universality class. Then, statement 2 can be used to include in this 
class SAWS on the square lattice. Thus, we may summarise. 

General statement. The universality class includes two ordinary walk problems on the 
square lattice, the SAW and the NAW problem, as well as, the following oriented walk 
problems: SAWS on MS and on UMS lattices and NAWS on MS lattice. Furthermore, 
partially (0 < p < 1) oriented SAWS and NAWS on both MS and UMS lattices are in the 
same universality class. 

7. Discussion 

Walk problems on oriented lattices may now become popular. As Guttmann (1983) 
points out, the MS and the UMS (or L) lattices are of particular interest for several 
reasons. It is also clear from this paper how the study of oriented walk problems may 
help in an understanding of the behaviour of ordinary walk problems. These orienta- 
tions and the corresponding walk problems may be called. ‘isotropic’, where the term 
implies that there is no preference for any lattice direction. This property appears to 
be very important. 

In the past few years a considerable amount of work has been done in the study 
of anisotropic lattice problems. An example may be referred to here. Several recent 
papers considered the so-called directed SAW problem in which the walker is not 
allowed to proceed in one direction of the lattice. The problem is characterised by a 
‘direction of flow’. It was stated a long time ago (see Malakis 1975, § 2) that this 
problem obeys a critical behaviour similar to that of fully directed SAWS. Yet, Chak- 
rabarti and Manna (1983) studied by computer enumeration the problem and suggested 
a different value for the critical exponent v. Of course, their prediction is not correct. 
Cardy (1983) and Redner and Majid (1983) described correctly the critical behaviour 
for this problem. The direction of flow produces an anisotropy in the problem and 
this is reflected on the critical exponent v which is determined by the behaviour of 
the average radius of the walk parallel to the anisotropy axis. A second exponent may 
be used to describe the transverse width in directions perpendicular to the anisotropy 
axis. 

A final comment for the 3 x 3 PSRG transformation used in this paper. The scheme 
is only approximate and there no proof exists that the qualitative predictions of the 
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transformation are correct. Yet, the examples considered in 0 5 provide very convincing 
evidence in favour of the view that the transformation gives correct qualitative predic- 
tions. A study of the 5 x 5 transformation for the problems considered in this paper 
will also strengthen this view. 
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